Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing

نویسندگان

  • Yi Yang
  • Na Wang
  • Xinyan Guo
  • Yi Zhang
  • Boping Ye
چکیده

In this study, we designed a microcosm experiment to explore the composition of the bacterial community in the rhizosphere of maize and bulk soil by sequencing the V3-V4 region of the 16S rRNA gene on the Illumina system. 978-1239 OTUs (cut off level of 3%) were found in rhizosphere and bulk soil samples. Rhizosphere shared features with the bulk soil, such as predominance of Acidobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes and TM7. At genus level, many of the dominant rhizosphere genera (Chitinophaga, Nitrospira, Flavobacterium, etc.) displayed different patterns of temporal changes in the rhizosphere as opposed to the bulk soil, showing rhizosphere has more impact on soil microorganisms. Besides, we found that significant growth-related dynamic changes in bacterial community structure were mainly associated with phylum Bacteroidetes, Proteobacteria and Actinobacteria (mainly genera Burkholderia, Flavisolibacter and Pseudomonas), indicating that different growth stages affected the bacterial community composition in maize soil. Furthermore, some unique genera in especial Plant-Growth Promoting Rhizobacteria (PGPR) such as Nonomuraea, Thiobacillus and Bradyrhizobium etc., which were beneficial for the plant growth appeared to be more abundant in the rhizosphere than bulk soil, indicating that the selectivity of root to rhizosphere microbial is an important mechanism leading to the differences in the bacteria community structure between rhizosphere and bulk soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant age and genotype affect the bacterial community composition in the tuber rhizosphere of field-grown sweet potato plants.

The hypothesis that sweet potato genotypes containing different starch yields in their tuberous roots can affect the bacterial communities present in the rhizosphere (soil adhering to tubers) was tested in this study. Tuberous roots of field-grown sweet potato of genotypes IPB-149 (commercial genotype), IPB-052, and IPB-137 were sampled three and six months after planting and analyzed by denatu...

متن کامل

Bacterial Communities in the Rhizosphere of Amilaceous Maize (Zea mays L.) as Assessed by Pyrosequencing

Maize (Zea mays L.) is the staple diet of the native peasants in the Quechua region of the Peruvian Andes who continue growing it in small plots called chacras following ancestral traditions. The abundance and structure of bacterial communities associated with the roots of amilaceous maize has not been studied in Andean chacras. Accordingly, the main objective of this study was to describe the ...

متن کامل

Comparison of the Rhizosphere Bacterial Communities of Zigongdongdou Soybean and a High-Methionine Transgenic Line of This Cultivar

Previous studies have shown that methionine from root exudates affects the rhizosphere bacterial population involved in soil nitrogen fixation. A transgenic line of Zigongdongdou soybean cultivar (ZD91) that expresses Arabidopsis cystathionine γ-synthase resulting in an increased methionine production was examined for its influence to the rhizosphere bacterial population. Using 16S rRNA gene-ba...

متن کامل

Abiotic factors shape microbial diversity in Sonoran Desert soils.

High-throughput, culture-independent surveys of bacterial and archaeal communities in soil have illuminated the importance of both edaphic and biotic influences on microbial diversity, yet few studies compare the relative importance of these factors. Here, we employ multiplexed pyrosequencing of the 16S rRNA gene to examine soil- and cactus-associated rhizosphere microbial communities of the So...

متن کامل

Changes in the Bacterial Community of Soybean Rhizospheres during Growth in the Field

Highly diverse communities of bacteria inhabiting soybean rhizospheres play pivotal roles in plant growth and crop production; however, little is known about the changes that occur in these communities during growth. We used both culture-dependent physiological profiling and culture independent DNA-based approaches to characterize the bacterial communities of the soybean rhizosphere during grow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017